V_{cb} and V_{ub} CKM Matrix Elements

OMITTED FROM SUMMARY TABLE

See the related review(s):

Semileptonic B Hadron Decays, Determination of V_{cb} and V_{ub}

V_{cb} MEASUREMENTS

For the discussion of V_{cb} measurements, which is not repeated here, see the review on "Determination of $|V_{cb}|$ and $|V_{ub}|$."

The CKM matrix element $|V_{cb}|$ can be determined by studying the rate of the semileptonic decay $B \to D^{(*)}\ell\nu$ as a function of the recoil kinematics of $D^{(*)}$ mesons. Taking advantage of theoretical constraints on the normalization and a linear ω dependence of the form factors $(F(\omega), G(\omega))$ provided by Heavy Quark Effective Theory (HQET), the $|V_{cb}| \times F(\omega)$ and ρ^2 can be simultaneously extracted from data, where ω is the scalar product of the two-meson four velocities, F(1) is the form factor at zero recoil $(\omega=1)$ and ρ^2 is the slope. Using the theoretical input of F(1), a value of $|V_{cb}|$ can be obtained.

```
|V_{cb}| \times F(1) (from B^0 \rightarrow D^{*-}\ell^+\nu)
VALUE (units 10^{-2})
                                        DOCUMENT ID
                                                              TECN COMMENT
                                         (Produced by HFLAV) with 
ho^2=1.139\pm0.020 and a
3.522\pm0.037 OUR EVALUATION
correlation 0.268. The fitted \chi^2 is 63.2 for 27 degrees of freedom.
3.62 ±0.05 OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below.
                                      <sup>1</sup> PRIM
                                                                BELL
3.66 \pm 0.05
                                      <sup>2</sup> ADACHI
                                                          23J BEL2
                                                                         e^+e^- \rightarrow \Upsilon(4S)
3.676 \pm 0.028 \pm 0.086
                                      <sup>3</sup> WAHEED
                                                          21
                                                                 BELL
                                                                          e^+e^- \rightarrow \Upsilon(4S)
3.506 \pm 0.015 \pm 0.056
                                      <sup>4</sup> AUBERT
                                                          09A BABR e^+e^- \rightarrow \Upsilon(4S)
3.59 \pm 0.02 \pm 0.12
                                                          04D DLPH e^+e^- \rightarrow Z^{0}
                                      <sup>5</sup> ABDALLAH
3.92 \pm 0.18 \pm 0.23
                                      <sup>6</sup> ADAM
                                                                CLE2
4.31 \pm 0.13 \pm 0.18
              +0.23
                                      <sup>7</sup> ABREU
                                                          01H DLPH e^+e^- \rightarrow
3.55 \pm 0.14
                                      <sup>8</sup> ABBIENDI
                                                          000 OPAL
3.71 \pm 0.10 \pm 0.20
                                      <sup>9</sup> BUSKULIC
                                                                 ALEP
3.19 \pm 0.18 \pm 0.19
                                                                         e^+e^- \rightarrow Z
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                          e^+e^-
ightarrow~ \varUpsilon(4S), Repl.
                                     <sup>10</sup> PRIM
                                                                 BELL
3.64 \pm 0.09
                                                                              by PRIM 24
                                      3 WAHEED
                                                          19
                                                                          Repl. by WAHEED 21
3.483 \pm 0.015 \pm 0.056
                                                                 BELL
                                    <sup>11</sup> DUNGEL
3.46 \pm 0.02 \pm 0.10
                                                                 BELL
                                                                          Rep. by WAHEED 19
                                     <sup>12</sup> AUBERT
                                                          08AT BABR
                                                                         Repl. by AUBERT 09A
3.59 \pm 0.06 \pm 0.14
                                    <sup>13</sup> AUBERT
                                                                          Repl. by AUBERT 09A
3.44 \pm 0.03 \pm 0.11
                                                          08R BABR
                                    <sup>14</sup> AUBERT
                                                                BABR
                                                                          Repl. by AUBERT 08R
3.55 \pm 0.03 \pm 0.16
                                    <sup>15</sup> ABDALLAH
3.77 \pm 0.11 \pm 0.19
                                                          04D DLPH
                                                                          e^+e^- \rightarrow Z^0
```

https://pdg.lbl.gov Page 1 Created: 12/2/2025 14:25

BELL

Repl. by DUNGEL 10

16 ABE

 $3.54 \pm 0.19 \pm 0.18$

```
4.31 \pm 0.13 \pm 0.18
                                  <sup>17</sup> BRIERE
                                                           CLE2
                                                                    e^+e^- \rightarrow \Upsilon(4S)
3.28 \pm 0.19 \pm 0.22
                                     ACKERSTAFF 97G OPAL
                                                                   Repl. by ABBIENDI 00Q
                                  <sup>18</sup> ABREU
3.50 \pm 0.19 \pm 0.23
                                                     96P DLPH Repl. by ABREU 01H
3.51 \pm 0.19 \pm 0.20
                                  <sup>19</sup> BARISH
                                                                   Repl. by ADAM 03
                                                           CLE2
3.14 \pm 0.23 \pm 0.25
                                     BUSKULIC
                                                     95N ALEP Repl. by BUSKULIC 97
```

- 1 PRIM 24 value established from a complete set of angular coefficients for exclusive B
 ightarrow $\overline{D}^*\ell^+
 u_\ell$ decays with hadronic tag-side reconstruction. The $|V_{cb}| imes F(1)$ is derived from the extracted the BGL and CNL form factor parameters: $|V_{cb}|_{\mathsf{BGL}} = (40.7 \pm 0.7) imes 10.7$ 10^{-3} with the zero-recoil lattice QCD point $\emph{F}(1)=0.900\pm0.009$ and $|\emph{V}_{cb}|_{\mathsf{CNL}}=$ $(40.3 \pm 0.6) \times 10^{-3}$.
- ² ADACHI 23J result comes from differential shapes of exclusive $B \to D^* \ell^- \nu_\ell$ ($\ell = e$ or μ) decays. Using CNL form factor parametrization and the zero-recoil lattice QCD point $F(1) = 0.906 \pm 0.013 \text{ ADACHI } 23 \text{J finds } |\mathsf{V}_{cb}|_{\mathsf{CNL}} = (40.57 \pm 0.31 \pm 0.95 \pm 0.58) \times 10^{-3}$ where the last uncertainty is due to the prediction of F(1). Also reports a measurement of $|\mathsf{V}_{cb}|_{\mathsf{BGL}} = (40.13 \pm 0.27 \pm 0.93 \pm 0.58) \times 10^{-3}$ using BGL form factors parametrization.
- ³ WAHEED 21 uses fully reconstructed $D^{*-}\ell^+\nu$ events ($\ell=e$ or μ) and $\eta_{EW}=1.0066$.
- ⁴Obtained from a global fit to $B o D^{(*)}\ell
 u_\ell$ events, with reconstructed $D^0\ell$ and $D^+\ell$ final states and $ho^2=1.22\pm0.02\pm0.07$.
- 5 Measurement using fully reconstructed D^* sample with a $\rho^2=1.32\pm0.15\pm0.33$. 6 Average of the $B^0\to D^*(2010)^-\ell^+\nu$ and $B^+\to \overline{D}^*(2007))\ell^+\nu$ modes with $\rho^2=1.61\pm0.09\pm0.21$ and $f_{+-}=0.521\pm0.012$.
- 7 ABREU 01H measured using about 5000 partial reconstructed D^* sample with a $\rho^2 = 1.34 \pm 0.14 ^{+0.24}_{-0.22}$
- 8 ABBIENDI 00Q: measured using both inclusively and exclusively reconstructed $D^{*\pm}$ samples with a $ho^2=1.21\pm0.12\pm0.20$. The statistical and systematic correlations between $|V_{ch}| \times F(1)$ and ρ^2 are 0.90 and 0.54 respectively.
- ⁹ BUSKULIC 97: measured using exclusively reconstructed $D^{*\pm}$ with a a^2 =0.31 \pm 0.17 \pm 0.08. The statistical correlation is 0.92.
- Measured from differential shapes of exclusive $B \to D^* \ell^- \nu_\ell$ decays with hadronic tagside reconstruction and extracting the CNL and BGL form factor parameters. PRIM 23 finds $|V_{cb}|_{CNL} = (40.2 \pm 0.9) \times 10^{-3}$ with the zero-recoil lattice QCD point $F(1) = 10^{-3}$ 0.906 ± 0.013 . PRIM 23 provides also a measurement of $|V_{cb}|_{BGL} = (40.7 \pm 1.0) \times 10^{-3}$.
- $^{11}\, {\rm Uses}$ fully reconstructed ${\it D^{*-}}\, \ell^+\, \nu$ events ($\ell={\it e}$ or μ).
- 12 Measured using the dependence of $B^- o D^{*0} \, e^- \overline{\nu}_e$ decay differential rate and the form factor description by CAPRINI 98 with $ho^2=1.16\pm0.06\pm0.08$.
- 13 Measured using fully reconstructed D^{st} sample and a simultaneous fit to the Caprini-Lellouch-Neubert form factor parameters: $ho^2=1.191\pm0.048\pm0.028$, $R_1(1)=1.429\pm0.061\pm0.044$, and $R_2(1)=0.827\pm0.038\pm0.022$.
- 14 Measurement using fully reconstructed D^* sample with a $\rho^2=1.29\pm0.03\pm0.27.$ 15 Combines with previous partial reconstructed D^* measurement with a $\rho^2=1.39\pm0.10\pm0.10$
- 16 Measured using exclusive $B^0 \rightarrow D^*(892)^- e^+ \nu$ decays with $\rho^2 = 1.35 \pm 0.17 \pm 0.19$ and a correlation of 0.91.
- 17 BRIERE 02 result is based on the same analysis and data sample reported in ADAM 03.
- 18 ABREU 96P: measured using both inclusively and exclusively reconstructed $\mathit{D}^{*\pm}$ samples.
- ¹⁹BARISH 95: measured using both exclusive reconstructed $B^0 o D^{*-} \ell^+ \nu$ and $B^+ o$ $D^{*0}\ell^+\nu$ samples. They report their experiment's uncertainties $\pm 0.0019 \pm 0.0018 \pm 0.0019$ 0.0008, where the first error is statistical, the second is systematic, and the third is the uncertainty in the lifetimes. We combine the last two in quadrature.

Created: 12/2/2025 14:25

$|V_{cb}| \times G(1) \text{ (from } B \rightarrow D^- \ell^+ \nu)$

VALUE (units 10^{-2})

DOCUMENT ID TECN COMMENT

Created: 12/2/2025 14:25

4.121 \pm 0.100 OUR EVALUATION (Produced by HFLAV) with $ho^2 = 1.128 \pm 0.033$ and a correlation 0.747. The fitted χ^2 is 4.8 for 8 degrees of freedom.

4.17 \pm 0.08 OUR AVERAGE

$4.109\!\pm\!0.116$				$e^+e^- ightarrow$	
4.229 ± 0.137	² GLATTAUER				
$4.23 \pm 0.19 \pm 0.14$	³ AUBERT			$e^+e^- \rightarrow$	
$4.31 \pm 0.08 \pm 0.23$	⁴ AUBERT	09A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.16 \pm 0.47 \pm 0.37$	⁵ BARTELT	99	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$2.78 \pm 0.68 \pm 0.65$	⁶ BUSKULIC	97	ALEP	$e^+e^- \rightarrow$	Z

• • • We do not use the following data for averages, fits, limits, etc. • • •

4.11
$$\pm 0.44$$
 ± 0.52 7 ABE 02E BELL Repl. by GLATTAUER 16 3.37 ± 0.44 $^{+0.72}$ $_{-0.49}$ 8 ATHANAS 97 CLE2 Repl. by BARTELT 99

 $^{^1}$ Obtained from a 2D fit to the combined $B o \overline D\ell^+
u_\ell$ sample with a model-independent parametrization according to Boyd-Grinstein-Lebed (BGL), in which a hadronic decay of the second B meson is fully reconstructed.

 $^{^2}$ Obtained from a fit to the combined partially reconstructed $B
ightarrow \ \overline{D} \ell
u_\ell$ sample while tagged by the other fully reconstructed B meson in the event. Also reports fitted ρ^2 1.09 ± 0.05 .

 $^{^3}$ Obtained from a fit to the combined $B o \, \overline{D} \ell^+
u_\ell$ sample in which a hadronic decay of the second *B* meson is fully reconstructed and $\rho^2 = 1.20 \pm 0.09 \pm 0.04$.

⁴Obtained from a global fit to $B \to D^{(*)} \ell \nu_{\ell}$ events, with reconstructed $D^0 \ell$ and $D^+ \ell$ final states and $\rho^2 = 1.20 \pm 0.04 \pm 0.07$.

⁶ BUSKULIC 97: measured using exclusively reconstructed D^{\pm} with a $a^2=-0.05\pm0.53\pm0.38$. The statistical correlation is 0.99.

7 Using the missing energy and momentum to extract kinematic information about the undetected neutrino in the $B^0 o D^- \ell^+ \nu$ decay.

8 ATHANAS 97: measured using both exclusive reconstructed $B^0 \to D^- \ell^+ \nu$ and $B^+ \to D^0 \ell^+ \nu$ samples with a $\rho^2 = 0.59 \pm 0.22 \pm 0.12^{+0.59}_{-0}$. They report their experiment's uncertainties $\pm 0.0044 \pm 0.0048^{+0.0053}_{-0.0012}$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the form factor model variations. We combine the last two in quadrature.

$|V_{cb}|$ (from $D_s^{*-}\mu^+\nu_\mu$)

VALUE (units 10 ⁻³)	DOCUMENT ID		TECN	COMMENT	
41.4±0.6±0.9±1.2	¹ AAIJ	20E	LHCB	pp at 7, 8 TeV	

 $^{^1}$ Measured from an inclusive sample of $D_s^-\,\mu^+$ candidates using CNL parameterization of the form factor. AAIJ 20E provides also measurement of $|{\rm V}_{cb}|=$ (42.3 \pm 0.8 \pm 0.9 \pm 1.2) \times 10 $^{-3}$ using BGL parameterization of the form factor. The third uncertainty is due to the external inputs used in the measurement.

V_{ub} MEASUREMENTS

For the discussion of V_{ub} measurements, which is not repeated here, see the review on "Determination of $|V_{cb}|$ and $|V_{ub}|$."

The CKM matrix element $|V_{ub}|$ can be determined by studying the rate of the charmless semileptonic decay $b \to u\ell\nu$. The relevant branching ratio measurements based on exclusive and inclusive decays can be found in the B Listings, and are not repeated here.

V_{cb} and V_{ub} CKM Matrix Elements REFERENCES

Created: 12/2/2025 14:25

⁵ BARTELT 99: measured using both exclusive reconstructed $B^0 \to D^- \ell^+ \nu$ and $B^+ \to D^0 \ell^+ \nu$ samples.

BARISH **BUSKULIC** 95

PR D51 1014 95N PL B359 236 B.C. Barish et al. D. Buskulic et al. (CLEO Collab.) (ALEPH Collab.)

Created: 12/2/2025 14:25